De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Oneindig veel priemgetallenStel n is een geheel getal groter dan 1. De getallen n en n + 1 verschillen slechts 1 en hebben dus geen gemeenschappelijke priemfactoren. Dat betekent dat het getal N2 = n(n + 1) ten minste twee verschillende priemfactoren heeft. Voor de getallen N2 en N2 + 1 geldt hetzelfde: zij verschillen slechts 1 en moeten dus ten minste twee verschillende priemfactoren hebben. Het getal N3 = N2( N2 + 1) = n(n + 1)[ n(n + 1) + 1] heeft dus minimaal drie verschillende priemfactoren. AntwoordLeuk bewijs. Dat kende ik niet.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|