De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Lebesgue integreerbare functie
Hallo, AntwoordOK: x=1/sqrt(u), dus 2/x=2sqrt(u) en cos(1/x2)=cos(u), verder dx=-1/(2usqrt(u))du. Dus (2/x)*cos(1/x2)dx wordt 2sqrt(u)cos(u)/(2u*sqrt(u))du = 1/u*cos(u)du; de integraal gaat van (k+1/2)p tot (k+3/2)p, dus u=(k+3/2)p, en dus 1/u=1/((k+3/2)p)=2/((2k+3)p) (je 1/u2 was fout: 1/x=sqrt(u)). Je A(k) is dus gelijk aan 2/((2k+3)p).
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|