De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Driehoeks distributiecurve

Bij het berekenen van meetonzeerheid passen we naast de normale distributie eveneens de distributiecurve in driehoeksvorm toe. Ik ben doende om onze ganse meetonzekerheid uit te diepen ( toepassen is één zaak maar ik wens ook te begrijpen wat ik toepas ! ) Voor het ogenblik zit ik helemaal vast bij het berekenen van de variantie in dat driehoeksgeval. Indien a en b de twee basisuiteinden zijn van de distributie en c de waarde bij de top van de driehoek ( allen waarden op de X-as )dan is de variantie :
( a2+ b2+c2-ab-bc-ca ) / 18. Maar hoe komt men tot dat resultaat ?
Beste dank bij voorbaat

Vanden
Iets anders - dinsdag 28 november 2006

Antwoord

Kijk naar de definitie van de variantie van een stochast X: de verwachting van het kwadraat van X-EX, of neem de karakterizering: EX2-(EX)2.
Hoe dan ook je moet de dichtheidsfunctie opstellen; die bestaat uit twee stukjes lineaire functie: tussen a an (a+b)/2 groeit hij van 0 naar c en tussen (a+b)/2 en b daalt hij weer van c tot 0, buiten het interval (a,b) geldt f(x)=0. Je moet nu de integraal van x2f(x) over heel R (en dus alleen maar van a tot b) uitrekenen, dat geeft EX2, en ook die van xf(x), dat geeft EX. Netjes uitwerken geeft het antwoord.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 9 december 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3