\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Driehoeks distributiecurve

Bij het berekenen van meetonzeerheid passen we naast de normale distributie eveneens de distributiecurve in driehoeksvorm toe. Ik ben doende om onze ganse meetonzekerheid uit te diepen ( toepassen is één zaak maar ik wens ook te begrijpen wat ik toepas ! ) Voor het ogenblik zit ik helemaal vast bij het berekenen van de variantie in dat driehoeksgeval. Indien a en b de twee basisuiteinden zijn van de distributie en c de waarde bij de top van de driehoek ( allen waarden op de X-as )dan is de variantie :
( a2+ b2+c2-ab-bc-ca ) / 18. Maar hoe komt men tot dat resultaat ?
Beste dank bij voorbaat

Vanden
Iets anders - dinsdag 28 november 2006

Antwoord

Kijk naar de definitie van de variantie van een stochast X: de verwachting van het kwadraat van X-EX, of neem de karakterizering: EX2-(EX)2.
Hoe dan ook je moet de dichtheidsfunctie opstellen; die bestaat uit twee stukjes lineaire functie: tussen a an (a+b)/2 groeit hij van 0 naar c en tussen (a+b)/2 en b daalt hij weer van c tot 0, buiten het interval (a,b) geldt f(x)=0. Je moet nu de integraal van x2f(x) over heel R (en dus alleen maar van a tot b) uitrekenen, dat geeft EX2, en ook die van xf(x), dat geeft EX. Netjes uitwerken geeft het antwoord.

kphart
zaterdag 9 december 2006

©2001-2024 WisFaq