De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bepaal de oppervlakte

Hoi

Ik zit al een tijdje te zoeken op een bewijs, maar ik raak er niet uit.

P: y2= 2ax. Neem een willekeurig punt M op de parabool. A is het snijpunt van de raaklijn in M en de richtlijn.
Bewijs: AF staat loodrecht op MF

Zouden jullie me kunnen helpen?

Heel heel heel veel dank

Manon
3de graad ASO - maandag 19 juni 2006

Antwoord

Hallo

Als M(x0,y0) een willekeurig punt is van de parabool, is de vergelijking van de raaklijn door M aan de parabool :
y0.y = a.(x + x0)
De vergelijking van de richtlijn d : x = -a/2
De coördinaat van hun snijpunt A is dus te bepalen.
De coördinaat van F is (a/2,0)
Hieruit kun de rico van AF bepalen.
Eveneens kun je de rico van MF bepalen.
Toon aan het product van deze twee rico's gelijk is aan -1.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 19 juni 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3