WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Bepaal de oppervlakte

Hoi

Ik zit al een tijdje te zoeken op een bewijs, maar ik raak er niet uit.

P: y2= 2ax. Neem een willekeurig punt M op de parabool. A is het snijpunt van de raaklijn in M en de richtlijn.
Bewijs: AF staat loodrecht op MF

Zouden jullie me kunnen helpen?

Heel heel heel veel dank

Manon
19-6-2006

Antwoord

Hallo

Als M(x0,y0) een willekeurig punt is van de parabool, is de vergelijking van de raaklijn door M aan de parabool :
y0.y = a.(x + x0)
De vergelijking van de richtlijn d : x = -a/2
De coördinaat van hun snijpunt A is dus te bepalen.
De coördinaat van F is (a/2,0)
Hieruit kun de rico van AF bepalen.
Eveneens kun je de rico van MF bepalen.
Toon aan het product van deze twee rico's gelijk is aan -1.

LL
19-6-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#46004 - Ruimtemeetkunde - 3de graad ASO