De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Inwendige automorfismenHallo! AntwoordEen inwendig automorfisme is van de vorm phia(x)=a*x*a-1; voor elke a in de groep heb je zo een automorfisme. De verzameling In(G)={phia:a in G} is een deelverzameling van Aut(G) (de verzameling van alle automorfismen); Aut(G) is een groep, met `samenstelling van afbeeldingen' als groepsoperatie. ``In(G) is een ondergroep van Aut(G)'' betekent dus: 1) als f, g in In(G) dan ook `f na g' in In(G), 2) als f in In(G) dan f-1 in In(G), en 3) In(G) is niet leeg.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|