De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Is de deze polynoom irreducibel en hoeveel elementen heeft het lichaam?

Ok hierbij de volgende vraag, gezien ik nergens fatsoenlijk uitleg over polynomen kan vinden.

Laat zien dat X3-X2+3 irreducibel is in /5. K is het lichaam /5/(X3-X2+3). Hoeveel elementen heeft K? Bepaalde de inverse van X2-1 in K.

Ik weet normaal gesproken dat je wanneer een polynoom te ontbinden is in factoren deze reducibel is. Maar hoe je aantoont dat deze irreducibel is en vooral nog eens in /5 weet ik al helemaal niet. De notatiewijze /5/(X3-X2+3) zegt me ook niet veel, dus ook daarvan lukt het mij niet de inverse te bepalen. Kunnen jullie mij enigzins duidelijk uitleggen hoe je dit kan berekenen en hebben jullie misschien tips waar ik goede uitleg over polynomen kan vinden?

bernd
Student universiteit - maandag 6 maart 2006

Antwoord

Het polynoom heeft graad 3, dus het is irreducibel dan en slechts dan als het geen nulpunt heeft. Omdat je in /5 werkt hoef je alleen 0, 1, 2, 3 en 4 in te vullen (en modulo 5 rekenen) om te zien dat er geen nulpunt is. In het lichaam /5/(X3-X2+3) geldt nu dat X3-X2+3=0, ofwel X3=X2-3. Dit betekent dat de elementen van K te representeren zijn als a+bX+cX2 met a,b,c=0,1,2,3,4; dus K heeft 125 elementen.
Je kunt de inverse vinden door te proberen: los (X2-1)(aX2+bX+c)=1 op naar a, b en c (modulo 5 rekenen en X3 telkens vervangen door X2-3). Je kunt ook het algoritme van Euclides toepassen en zo de grootste gemene deler van p=X2-1 en q=X3-X2+3 bepalen: die ggd is 1 en je vind polynomen s en t met s*p+t*q=1, s is dan de inverse.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 13 maart 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3