De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Partiële integratie

Ik dacht om volgende integraal zo op te lossen:

ò (x · ln (x-3))

hierbij u' = x dus u= x2/2
v = ln (x-3) dus v'= 1/(x-3)

dan wordt de integraal:

ln (x-3) · x2/2 - ò( 1/(x-3) · x2/2)

= ln (x-3) · x2/2 + 1/6ò (1/x · x2)

= ln (x-3) · x2/2 + 1/6 (lnx · x3/3)

= ln (x-3) · x2/2 + 1/6 lnx·x3/3

Maar dit blijkt niet te kloppen...

Waar zit dan de fout??

Mercikes voor de hulp!!

Elke
3de graad ASO - zondag 4 december 2005

Antwoord

Beste Elke,

Je fout zit (na "dan wordt de integraal:") in de overgang tussen regel 1 en 2. We hebben:

-ò1/(x-3) · x2/2 dx
-òx2/(2(x-3)) dx
-1/2 òx2/(x-3) dx

Verder vereenvoudigen gaat daar niet, het is (x-3) dat volledig in de noemer staat; je kan niet zomaar die factor 1/6 buitenbrengen!

We hebben nu x2/(x-3), de graad van de teller is hoger dan die van de noemer dus kan je de deling nog uitvoeren (staartdeling van veeltermen maken). Dit geeft je een quotiënt en een rest die rechtstreeks te integreren zijn.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 4 december 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3