De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Raaklijnen uit een punt buiten de cirkel

 Dit is een reactie op vraag 41823 
Voor D AQM te berekenen zat ik wel eventjes in de problemen. Maar nu schoot het mij plots te binnen. Mag je daar ook de 3-4-5 stelling gebruiken? want er is maar 1 oplossing gegeven. Zoja, denk ik wel dat ik de juiste antwoorden heb: |AP| gelijk is aan
10.4(52/5) en hoek P1 gelijk is aan 22°37'12"(dit heb ik berekend door de cosinus, maar mag je ook |AM|/|PM| doen?) en [AB] = 8

met vriendelijke groeten,
Inge

Inge
2de graad ASO - zaterdag 26 november 2005

Antwoord

Je kunt AM berekenen met de stelling van Pythagoras. AM=12. Om ÐMPA te berekenen kan je ook de tangens gebruiken.

tanÐMPA=5/12 Þ ÐMPA22,6°22°37'12"

Omdat je de hoeken moet berekenen sugereert dat een beetje dat je AB ook met hoeken moet berekenen. Dat kan ook wel want ik ken ÐPMA ook.. en DMQA is ook weer een rechthoekige driehoek. Dus geldt:

sinÐPMA=AQ/5

Daarmee kan je AQ berekenen, maar volgens mij is AQ dan niet precies 4.

Een andere mogelijkheid is dat je gebruik maakt van het feit dat DMPA en DMQA gelijkvormig zijn, dat kan ook... je kunt dan zelfs AB exact berekenen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 26 november 2005
 Re: Re: Raaklijnen uit een punt buiten de cirkel 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3