De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Sinus, cosinus en complementaire hoeken

Gegeven is dat sin(70°) = 0,94
Bereken cos(20°)

Gegeven is dat sin(42°) = p
Druk cos(42°) in p uit.

Wat zijn hiervoor ook al weer de regels en kun je alsjeblieft van beide een uitwerking geven zodat ik kan zien het ook weer moest (Ik mag geen rekenmachine gebruiken!). Ik heb dit ooit gehad en volgens mij is het heel simpel maar na 4 jaar weet ik de regels niet meer en ik kan het nergens meer vinden!

Christ
Leerling bovenbouw havo-vwo - dinsdag 27 augustus 2002

Antwoord

Beste Christiaan

Als het goed is heb je een formulekaart (of -boekje).
Er is ook een on-line versie.

Deze formules werken met radialen i.p.v. graden
Als je bedenkt dat /2 overeenkomt met 90° kun je beide problemen met bovenste formules makkelijk oplossen.

Nog beter is gewoon een rechthoekige driehoek te tekenen met schuine zijde 1 en de definitie van sinus- o/s dus hier gewoon o(verstaande zijde) - en cosinus- a/s dus hier gewoon a(anliggende zijde) toe te passen.
Je hebt dan alleen nog nodig dat in een rechthoekige driehoek de twee andere hoeken altijd samen 90° zijn, en de beroemde stelling van Pythagoras. In feite zie je dan ook het 'waarom' van de formules die je gebruikt.

Zie formulekaart-online

gk
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 28 augustus 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3