De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Integraal berekenen

 Dit is een reactie op vraag 41063 
Hoi,

gebruik van cos2(t) + sin2(t) = 1
r2 (constante) buiten de integraal halen.

r2 ò30ò-p/2p/2 1/1 rdrdt

F(x) = r2(t)

Invullen:

r = 3 of 0
(t) = -p/2 of p/2

Voor r = 0 - antwoord is 0

r = 3 met (t) = -p/2 - antwoord is 9·-p/2
r = 3 met (t) = p/2 - antwoord is 9·p/2

Oppervlakte halve cirkel = 18·(p/2)

Klopt mijn berekening?

vriendelijk bedankt
mvg maarten

Maarte
Student hbo - maandag 24 oktober 2005

Antwoord

Beste Maarten,

Waar komt die r2 vandaan? Er stond toch ook nog een wortel? Dus dan krijg je daar mooi 1/Ör2 = 1/|r|. Overigens zou ik die ook niet buitenbrengen, want we integreren naar r! Die is dus niet constant...
Samen met de r van rdrdt geeft dit r/|r| als integrand, normaalgezien is dit het teken van r maar vermits dat overal positief is mag je dat gewoon laten vallen.

Je krijgt dus als integraal: òòdtdr met -p/2tp/2 en 0r3.

Dit berekenen zou toch wel erg eenvoudig moeten zijn

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 24 oktober 2005
 Re: Re: Re: Integraal berekenen 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3