De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Asymptoten

 Dit is een reactie op vraag 39385 
Je schrijft: de teller onder de wortel wordt -2, en daar lag in de beginne mijn probleem: hoe kan ik nu aanvaarden dat ik als resultaat: vierkantswortel van min oneindig krijg: men heeft mij altijd wijs gemaakt dat een vierkantswortel van een negatief getal niet bestaat ! tenzij je met de complexe getallen begint ...

Jean-P
Ouder - dinsdag 21 juni 2005

Antwoord

Beste Jean-Pierre,

Het feit dat die wortel eventueel complex zou worden verandert niets aan het feit dat die teller op dat moment -2 is, zodat je dus niet de onbepaaldheid 0/0 krijg. Hier maakt dat overigens niet eens uit, we namen immers de linkerlimiet net omdat de wortel rechts van -1 niet gedefinieerd was (lees: daar niet reëel maar complex was).

Wanneer we x naar -1 laten naderen langs links wordt de teller inderdaad negatief, maar de noemer blijft in dat geval ook negatief, je nadert langs de negatieve kant van 0 en een breuk waar zowel teller als noemer van negatief zijn is in zijn geheel positief. We vinden dus wel degelijk +¥ als linkerlimiet aan de asymptoot x = -1

De breuk zelf wordt dus +¥ maar door de x voor de breuk (die we ook naar -1 laten gaan) wordt dit uiteraard -¥.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 21 juni 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3