De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Limiet modulusfunctiehoi, AntwoordDe limiet moet bestaan en bovendien eindig zijn. Daarom is niet elke functie differentieerbaar in elk punt. De modulusfunctie is niet differentieerbaar in 0 omdat (f(x)-f(0))/(x-0) gelijk is aan 1 als x0 en gelijk is aan -1 als x0. De limiet voor x®0 bestaat dus niet. Als je het grafisch bekijkt kan je dat al vermoeden. Een raaklijn aan een punt op de grafiek valt in de buurt van dat punt met de grafiek samen. Of anders gezegd, hoe meer je inzoomt op dat gedeelte van de grafiek, hoe meer het op een rechte lijn gaat lijken. Dat is niet zo bij het nulpunt van de modulusfunctie, De 'knik' blijft altijd zichtbaar hoe ver je ook inzoomt.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|