De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
BovengrensHoi, AntwoordDe ongelijkheid is de sleutel tot het probleem. Wat je doet is de oplossingen van twee differentiaalvergelijkingen met elkaar vergelijken: neem een oplossing f van de gegeven differentiaalvergelijking en een oplossing g van dy/dx=y^2. Stel dat de grafieken van f en g elkaar in een punt (a,b) snijden; in dat punt geldt f'(a)=a^2+b^2 en g'(a)=b^2, dus f'(a)g'(a) (en zelf f'(a)g'(a) als a niet 0 is). Dat betekent dat f sneller stijgt dan g en dat f van onder naar boven door de grafiek van g gaat (teken een plaatje); na a blijft f boven de grafiek van g.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|