Hoi,
Ik heb de dv dydx = x^2 + y^2 y(0)=1 .
Deze is niet "zomaar" op te lossen.
Op het interval xÎ[c1 , 10] geldt dat x^2+y^2y^2+c2.
Nu moet ik dit gegeven vinden om een bovengrens te bepalen. Hier loop ik in vast. Heeft iemand een hint voor mij. Ik kan Picard iteratie's gebruiken....
met vriendelijke groet,Roedi
27-2-2005
De ongelijkheid is de sleutel tot het probleem. Wat je doet is de oplossingen van twee differentiaalvergelijkingen met elkaar vergelijken: neem een oplossing f van de gegeven differentiaalvergelijking en een oplossing g van dy/dx=y^2. Stel dat de grafieken van f en g elkaar in een punt (a,b) snijden; in dat punt geldt f'(a)=a^2+b^2 en g'(a)=b^2, dus f'(a)g'(a) (en zelf f'(a)g'(a) als a niet 0 is). Dat betekent dat f sneller stijgt dan g en dat f van onder naar boven door de grafiek van g gaat (teken een plaatje); na a blijft f boven de grafiek van g.
Los nu het beginwaardeprobleem dy/dx=y^2 met y(0)=1 op: de oplossing is g(x)=1/(1-x); de oplossing, f, van het oorspronkelijke probleem blijft boven de grafiek van g. Omdat g bij x=1 een verticale asymptoot heeft zal f ook een verticale asymptoot hebben en die ligt bij x=1 of links daarvan; de oplossing bestaat dus op een interval [0,a) met a1.
kphart
3-3-2005
#34620 - Differentiaalvergelijking - Student universiteit