De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vergelijking oplossen

Er is een vergelijking x_1 + x_2 + x_3 + x_4 = 50.
Hiervan moet ik het aantal mogelijkheden berekenen waarbij:
a) x_1, x_2, x_3, x_4 = 0
b) x_1=1, x_2=2, x_3=3, x_4=4
c) 0 = x_i =15 voor i = 1, 2, 3, 4

Ik weet dat b en c op a gebaseerd zijn.
Het antwoord op a is volgens mij 4+50-1 boven 50.
Nu vraag ik me af hoe ik b en c op kan lossen.

Bij voorbaat dank.

Jos
Student universiteit - woensdag 9 februari 2005

Antwoord

Hoi Jos,


Voor b): Je bent in feite 50 voorwerpen over 4 bakjes aan het verdelen. Deze voorwaarde betekent dat je alvast 1 voorwerp in bakje 1 gooit, 2 in bakje 2, 3 in bakje 3 en 4 in bakje 4. Daarna verdeel je de overige 40 voorwerpen willekeurig over de vier bakjes, net zoals in a). Merk op dat je dit ook formeler zou kunnen opschrijven door te kijken naar yi = xi-i, waarna geldt dat yi 0 en y1 + y2 + y3 + y4 = 50-10 = 40...

Voor c): Hier kun je kijken naar zi = 15 - xi. Hierbij hebben we overigens geluk. Als er geen 15 had gestaan, maar een getal groter dan 16, dan was het toch wat ingewikkelder geweest.

Overigens zijn er ook wel meer sophisticated manieren om dit soort problemen aan te pakken.
Succes ermee,

Guido Terra

gt
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 15 februari 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3