De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Algoritme om een vierkantswortel te benaderen

 Dit is een reactie op vraag 28980 
Hier is een slimmer algoritme voor, dat stukken sneller tot het juiste antwoord leidt. Zelfde voorbeeld: we zoeken de wortel uit 30. Eerste gok: u0=15.

Dit leidt tot u02=225. Veels te groot.
Neem nu het gemiddelde tussen u0 en 30/u0, en noem dit u1, een betere benadering: u1=(15+2)/2=8.5.

In het algemeen geldt de reeks
u[i+1]=(u[i]+30/u[i])/2

Met beginwaarde u0=15 neemt dit de volgende waarden aan:
15, 8.5, 6.0, 5.50, 5.47728, 5.47723 (de echte waarde is ongeveer 5.47723).

Tammo
Student universiteit - zondag 19 december 2004

Antwoord

Newton-Raphson dus...

Van de vergelijking F(x)=x2-a=0 is de postieve wortel √a. Voor x$>$0 convergeert het proces naar √a.

De iteratieformule:

q31541img1.gif

Met F'(x)=2x volgt inderdaad de iteratieformule:

q31541img2.gif

Inderdaad! Bedankt...

Zie Nog meer Newton-Raphson

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 19 december 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3