Hier is een slimmer algoritme voor, dat stukken sneller tot het juiste antwoord leidt. Zelfde voorbeeld: we zoeken de wortel uit 30. Eerste gok: u0=15.
Dit leidt tot u02=225. Veels te groot.
Neem nu het gemiddelde tussen u0 en 30/u0, en noem dit u1, een betere benadering: u1=(15+2)/2=8.5.
In het algemeen geldt de reeks
u[i+1]=(u[i]+30/u[i])/2
Met beginwaarde u0=15 neemt dit de volgende waarden aan:
15, 8.5, 6.0, 5.50, 5.47728, 5.47723 (de echte waarde is ongeveer 5.47723).Tammo Jan Dijkema
19-12-2004
Newton-Raphson dus...
Van de vergelijking F(x)=x2-a=0 is de postieve wortel √a. Voor x$>$0 convergeert het proces naar √a.
De iteratieformule:
Met F'(x)=2x volgt inderdaad de iteratieformule:
Inderdaad! Bedankt...Zie Nog meer Newton-Raphson [/zoeken.asp?search=Newton+Raphson&vraagaan=FALSE&exact=and&categorie= ]
WvR
19-12-2004
#31541 - Numerieke wiskunde - Student universiteit