|
|
\require{AMSmath}
Fractalen - zoeken van de aantrekkingspunten
Hallo
Ik ben op zoek geweest naar websites i.v.m. fractalen, daar vond ik de volgende (schitterende) website: fractal8
Maar ik snap hun derde fractaal niet! deze is x = x2-1 Om de dekpunten te vinden, lossen we deze vergelijking op, maar ik vind slechts: (1±Ö5)/2 ! En NIET hun 2 stabiele dekpunten, nl. 0 en -1...
Wat doe ik verkeerd? Om de dekpunten te vinden stel je toch je functievoorschrift gelijk aan x. En los je dit op...
Tom
3de graad ASO - zaterdag 4 december 2004
Antwoord
Deze pagina verwijst terug naar fractal3
De dekpunten van f(x)=x2-1 zijn inderdaad (1±Ö5)/2. Maar zoals je hebt kunnen zien convergeert de rij niet naar deze dekpunten. Er ontstaat periodiciteit met periode 2. De twee waarden waartussen op en neer gesprongen wordt zijn dekpunten van de functie f(f(x))=(x2-1)2-1=x4-2x2. Als je x4-2x2=x probeert op te lossen krijg je x(x3-2x-1)=0 Deze vergelijking heeft oplossingen : x=0, x=-1 en x=(1±Ö5)/2
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 4 december 2004
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|