|
|
\require{AMSmath}
Complexe getallen
hallo ik heb een vraagje voor jullie wij moeten dit oplosen de vierkantswortel van 2-i/1-2i
er stond het toegevoegd complex getal van 2+i bovenaan de breukstreep en ik vermoed dat dit 2-i is. klopt het nu wat ik als volgt ga doen aub ? ik bepaal alle complexe getallen die vierkantswortel zijn van 2-i/1-2i stel x+yi is vierkantswortel
(x+yi)2 = 2-i/1-2i x2-y2+2xyi = ... ik denk dat je nu gelijkheid van complexe getallen moet gebruiken maar ik weet niet wat nu aan wat gelijk is aangezien je met een breuk zit hopelijk zettn jullie me op weg! bedankt!
NICJE
3de graad ASO - woensdag 10 november 2004
Antwoord
Dat er een breuk staat is op zich niet erg, wat storend is, is dat je niet meteen de reele en imaginaire delen er in kan herkennen.
Daarvoor bestaat gelukkig een eenvoudige manier: vermenigvuldig teller en noemer van de breuk met het complex toegevoegde van de noemer, zodat die laatste reeel wordt.
Nu kan je eenvoudig het rechterlid opsplitsen in reeel en imaginair deel en kan je die delen gelijkstellen met hun collega's uit het linkerlid.
PS: Binnenkort zal je een handigere manier zien om vierkantswortels uit complexe getallen te trekken, gebaseerd op goniometrische voorstelling van complexe getallen.
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 10 november 2004
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|