De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Berekenen van de hoeken van een driehoek

Ik zou van enkele driehoeken de grootte van een bepaalde hoek willen weten maar ik heb absoluut geen kaas gegeten van meetkunde.
Driehoek 1: zijde a = 20193030, zijde b = 26561800 & zijde c = 6878800 meter
Driehoek 2: zijde a = 20194240, zijde b = 26561800 & zijde c = 6878800 meter
Driehoek 3: zijde a = 20222459, zijde b = 26561800 & zijde c = 6878800 meter
Van deze drie driehoeken zou ik dus telkens zo nauwkeurig mogelijk de hoek die zijde b en c met elkaar vormen.
Bestaat er zoiets als een standaardformule ?

Hans
Iets anders - dinsdag 2 november 2004

Antwoord

Vooropgesteld dat het om een driehoek in het platte vlak gaat (dus zijde a, b en c zijn alledrie lijnstukken en geen cirkelsegmenten) dan kun je de volgende formule gebruiken:
cos(hoek_bc)=(b2+c2-a2)/(2bc).
Oftewel
hoek_bc=arccos((b2+c2-a2)/(2bc)).
Let daarbij wel op graden en radialen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 3 november 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3