De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Meetfouten

Stel: je berekent de oppervlakte van een rechthoek. Hiervool zal je de zijden van de rechthoek gaan meten, en bij het afmeten van deze zijden zullen er meetfouten gebeuren. Toon aan dat de relatieve fout op de oppervlakte gelijk is aan de som van de relatieve fouten gemaakt op de lengte en de breedte. Neem z=x·y.

Kunnen jullie mij op weg helpen bij het oplossen van dit vraagstuk? Ik weet niet hoe te beginnen.

Julie
Student Hoger Onderwijs België - zaterdag 16 oktober 2004

Antwoord

Stel de absolute fouten in x en y zijn $\Delta$x en$\Delta$y.
De absolute fout in x.y is dan
(x+$\Delta$x)·(y+$\Delta$Y)-xy.
Dit levert
xy+x$\Delta$y+y$\Delta$x+$\Delta$x$\Delta$y-xy=
x$\Delta$y+y$\Delta$x+$\Delta$x$\Delta$y
Verwaarlozen we nu $\Delta$x$\Delta$y dan krijgen we: x$\Delta$y+y$\Delta$x.
Voor de relatieve fout delen we door x.y en we krijgen:
(x$\Delta$y+y$\Delta$x)/xy=x/$\Delta$x+y/$\Delta$y en dit is juist de som van de relatieve fouten in x en y.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 16 oktober 2004
Re: Meetfouten



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3