|
|
\require{AMSmath}
Continuiteit van de INTEGER-functie
Hallo , ik had al eerder deze vraag gepost. Maar had me miss ongelukkig uitgedrukt waardoor jullie dachten dat het ging om een soort absolute-waarde functie. Het gaat dus wel om de integer-functie die elk getal behalve een geheel getal afbeeldt op het grootst kleiner geheel getal dan x. bv : 1.2 wordt dan 1 en 1 blijft 1. Zo krijgt ge een trap en de functie is discontinu in elke Z aangezien je daar sprongetje maakt. dus \ daar is de functie continu Maar hoe zit het met de continuiteit van de functie f(x) = int( x +0.5 ) hoe schrijf je die zoals ik schreef bij int (x) \ want das de opdracht , bespreek de continuiteit van de functie int( x +0.5) Danku
Dirk
3de graad ASO - woensdag 4 augustus 2004
Antwoord
Hallo, int(x) maakt een sprong (is discontinu) in elk geheel punt. Deze nieuwe functie zal dus discontinu zijn in elk punt x waarvoor x+0.5 geheel is, of dus de functie is discontinu in + 0.5. Overal elders (notatie: \(+0.5)) is de functie continu. Groeten, Christophe.
Christophe
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 4 augustus 2004
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|