De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Afleiden cos(2x)

 Dit is een reactie op vraag 24587 
dus gewoon de 2 dleen apart afleiden en vermenigvuldigen?

2x afleiden: 2
cos u afleiden: -sin (u)
-2sin(2x)

als er staat dus cos (3x)' ,afleiden is dan 3sin(3x)
voor bv

cos (3x2)': -6sin(3x2)

Jeff P
Student universiteit - woensdag 26 mei 2004

Antwoord

(cos(3x))' = -3sin(3x), je bent het minnetje vergeten.
Je moet kijken welke functie 'in' de andere functie zit, als je bijvoorbeeld Ö(x2+2) wilt afleiden dan zie je dat x2+2 'in' de wortelfunctie zit, dus die leid je af (dat is 2x). Dan leid je de wortelfunctie af, waarbij je net doet alsof de functie x2+2 één onbekende (zeg maar je x) is 1/2Ö(x2+2). En dan vermenigvuldig je de afgeleiden 2x/2Ö(x2+2), wat vereenvoudigd kan worden tot x/Ö(x2+2).

En met cos(3x2) is dat net zo: (3x2)' = 6x, en stel u=3x2 dan is (cos(u))' = -sin(u) = -sin(3x2) (je leidt de cosinusfunctie af, maar het binnenwerk blijft hetzelfde).
En dan de schakels vermenigvuldigen -6x·sin(3x2)

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 26 mei 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3