De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Gradient van een functie uitgedrukt in vectoren

Hoe bereken ik de gradient van de volgende functie:

f(x,y,z) = |r|-n waarbij r = x i + y j + z k

(i, j en k zijn vectorrichtingen). Ik begrijp niet hoe een vector af te leiden is. Met vriendelijke groet,

Erik Hazelhof

Erik H
Student universiteit - dinsdag 20 april 2004

Antwoord

Men schrijft veelal (x,y,z) ipv xi + yj +zk.
Dus |r| = √(x2+y2+z2), volgens Pythagoras, en
f(x,y,z) = (x2+y2+z2)(-n/2).
De partiële afgeleide van f naar x is (-n/2)(x2+y2+z2)(-n/2)-1·(2x) = (-nx)(x2+y2+z2)(-n-2)/2),
en analoog berekent men de partiële afgeleiden van f naar y en naar z.
De gradiënt is dan ((-nx)(x2+y2+z2)(-n-2)/2, (-ny)(x2+y2+z2)(-n-2)/2, (-nz)(x2+y2+z2)(-n-2)/2).
Dit kan men ook opschrijven als volgt:
(-n)|r|-n-2 (x,y,z) = (-n)|r|-n-2 r = (-n)|r|-n-2 (xi + yj+ zk).
De gradiënt wijst dus in de richting van de oorsprong, namelijk in tegenovergestelde richting als r.
In die richting neemt f het snelst toe. Dat klopt, want: hoe groter |r|, hoe kleiner f.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 22 april 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3