Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Gradient van een functie uitgedrukt in vectoren

Hoe bereken ik de gradient van de volgende functie:

f(x,y,z) = |r|-n waarbij r = x i + y j + z k

(i, j en k zijn vectorrichtingen). Ik begrijp niet hoe een vector af te leiden is. Met vriendelijke groet,

Erik Hazelhof

Erik H
Student universiteit - dinsdag 20 april 2004

Antwoord

Men schrijft veelal (x,y,z) ipv xi + yj +zk.
Dus |r| = √(x2+y2+z2), volgens Pythagoras, en
f(x,y,z) = (x2+y2+z2)(-n/2).
De partiële afgeleide van f naar x is (-n/2)(x2+y2+z2)(-n/2)-1·(2x) = (-nx)(x2+y2+z2)(-n-2)/2),
en analoog berekent men de partiële afgeleiden van f naar y en naar z.
De gradiënt is dan ((-nx)(x2+y2+z2)(-n-2)/2, (-ny)(x2+y2+z2)(-n-2)/2, (-nz)(x2+y2+z2)(-n-2)/2).
Dit kan men ook opschrijven als volgt:
(-n)|r|-n-2 (x,y,z) = (-n)|r|-n-2 r = (-n)|r|-n-2 (xi + yj+ zk).
De gradiënt wijst dus in de richting van de oorsprong, namelijk in tegenovergestelde richting als r.
In die richting neemt f het snelst toe. Dat klopt, want: hoe groter |r|, hoe kleiner f.

hr
donderdag 22 april 2004

©2001-2024 WisFaq