|
|
\require{AMSmath}
Boogbrug
ik ben bezig met een werkstuk over bruggen. ik ben nu bezig met de boogbrug en heb op Funiculi-Funicula een wiskundeformule gevonden voor de berekening van de boog:
For the cos function, the second derivative is equal to the function itself, which is why the rods line up. This can be written mathematical notation like this y = 0.5 * (ex + e-x) = cos x dy/dx = 0.5 * (ex - e-x) = sin x = slope of cos x d2y/dx2 = 0.5 * (ex + e-x) = cos x = y = slope of sin x
...dat kunnen zij wel leuk neerzetten, maar ik begrijp in eerste instantie niet hoe ze aan de eerste formule komen. is dat een algemene regel of zo?
Else
Leerling bovenbouw havo-vwo - woensdag 25 februari 2004
Antwoord
Die eerste formule is inderdaad een definitie, maar je hebt wel een lettertje over het hoofd gezien. Er staat waarschijnlijk niet cos x (sin x) maar cosh x (sinh x). Dit zijn de hyperbolische functies.
En de grafiek van de functie y = 1/2 * (ex + e-x) = cosh x noemt men de "kettinglijn".
Vermits de afgeleide van ex = ex en dus de afgeleide van e-x = - e-x kloppen ook de volgende gelijkheden.
Opm. cos x = 1/2 * (eix + e-ix) en sin x = 1/2i * (eix - e-ix)
met i = Ö(-1) , de imaginaire eenheid.
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 25 februari 2004
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|