De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Inhoud van bol en ellipsoide berekenen mbv integralen

 Dit is een reactie op vraag 15252 
Ik begrijp nog niet goed wat je bedoelt met as1(x) en as2(x).
Kan je nog wat meer uitleg geven?

thomas
3de graad ASO - zondag 19 oktober 2003

Antwoord

Doorsnij de ellipsoide

x2/a2 + y2/b2 + z2/c2 = 1

met het vlak x=t. Dan krijg je een figuur die voldoet aan

t2/a2 + y2/b2 + z2/c2 = 1
y2/b2 + z2/c2 = 1 - t2/a2
y2/[b2(1-t2/a2)] + z2/[c2(1-t2/a2)] = 1

Die laatste vergelijking is die van een ellips met als halve assen b√(1-t2/a2) en c√(1-t2/a2). De oppervlakte van een ellips is $\pi$(ene halve as)(andere halve as). Wat ik genoteerd heb als as1 en as2 zijn dus eigenlijk de halve assen, sorry.

De lengte van beide halve assen is natuurlijk afhankelijk van het snijvlak (dus van de waarde van t). Als je nu alle oppervlakten van de sneetjes 'optelt' (integreert dus) dan bekom je het volume van de ellipsoide.

Dat idee van een volume te berekenen door oneindig dunne sneetjes op te tellen heet trouwens het principe van Cavalieri

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 19 oktober 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3