Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 15252 

Re: Inhoud van bol en ellipsoide berekenen mbv integralen

Ik begrijp nog niet goed wat je bedoelt met as1(x) en as2(x).
Kan je nog wat meer uitleg geven?

thomas
3de graad ASO - zondag 19 oktober 2003

Antwoord

Doorsnij de ellipsoide

x2/a2 + y2/b2 + z2/c2 = 1

met het vlak x=t. Dan krijg je een figuur die voldoet aan

t2/a2 + y2/b2 + z2/c2 = 1
y2/b2 + z2/c2 = 1 - t2/a2
y2/[b2(1-t2/a2)] + z2/[c2(1-t2/a2)] = 1

Die laatste vergelijking is die van een ellips met als halve assen b√(1-t2/a2) en c√(1-t2/a2). De oppervlakte van een ellips is $\pi$(ene halve as)(andere halve as). Wat ik genoteerd heb als as1 en as2 zijn dus eigenlijk de halve assen, sorry.

De lengte van beide halve assen is natuurlijk afhankelijk van het snijvlak (dus van de waarde van t). Als je nu alle oppervlakten van de sneetjes 'optelt' (integreert dus) dan bekom je het volume van de ellipsoide.

Dat idee van een volume te berekenen door oneindig dunne sneetjes op te tellen heet trouwens het principe van Cavalieri

cl
zondag 19 oktober 2003

©2001-2024 WisFaq