Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Inhoud van bol en ellipsoide berekenen mbv integralen

Goedemiddag,

Ik moet de inhoud van een bol en ellipsoïde berekenen met behulp van integralen, maar ik schijn er niet in te slagen.

De opdracht is te bewijzen dat de inhoud van een ellipsoïde gelijk is aan:

$\frac{4}{3}\pi\cdot a\cdot b\cdot c$

Ik kom echter steeds op $\frac{2}{3}\pi abc$ uit. De opdracht sluit het gebruik van de formule voor inhoudsberekening van omwentelingsfiguren uit.

Kan iemand mij helpen?
Dank bij voorbaat.

Thomas
3de graad ASO - zondag 19 oktober 2003

Antwoord

Als je de formule ivm omwentelingsfiguren niet mag gebruiken, snij de ellipsoide dan in sneetjes loodrecht op een as en bepaal de oppervlakte van zo een sneetje.

De doorsnede van een ellipsoide is een ellips en bij het sneetje dat hoort bij een bepaalde x-waarde worden de assen gegeven door

as1(x) = b.√(1-(x/a)2)
as2(x) = c.√(1-(x/a)2)

Het volume wordt dan de 'oneindige som' van alle sneetjes-oppervlakten

V
= $\int{}$-a+a $\pi$.as1(x).as2(x) dx
= $\int{}$-a+a $\pi$.b.c.(1-(x/a)2) dx
= $\frac{4}{3}\pi$a.b.c

cl
zondag 19 oktober 2003

 Re: Inhoud van bol en ellipsoide berekenen mbv integralen 

©2001-2024 WisFaq