De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Rechte van Euler

 Dit is een reactie op vraag 11726 
Zou je misschien ook een volledig bewijs daarvan kunnen geven? Dus kun je een goed bewijs leveren dat die punten op een rechte liggen. Want het bewijs dat nu is gegeven is nogal vaag en moeilijk te volgen vind ik.

konrad
Student hbo - woensdag 8 oktober 2003

Antwoord

Maar zo moeilijk is dit bewijsje toch niet? Bedenk dat het gaat over een rechthoekige driehoek, zodat er zich een bijzondere situatie voordoet.
Het bijzondere zit 'm hierin.
Door de rechthoekigheid ligt het snijpunt M van de drie middelloodlijnen in het midden van de schuine zijde.
Het hoogtepunt ligt in het hoekpunt A (als tenminste $\angle$A = 90°)
Als je nu AM trekt, dan trek je een lijnstuk vanuit hoekpunt A naar het midden M van de schuine zijde, en dús is AM een zwaartelijn. Het zwaartepunt ligt op alledrie de zwaartelijnen tegelijk, dus ergens op AM moet het zwaartepunt Z liggen. Maar dan heb je toch de punten A (hoogtepunt), Z (zwaartepunt) en M op één lijn liggen?

Dat de stelling voor willekeurige driehoeken ook geldig is, valt minder eenvoudig te bewijzen...

Zie Proof of Euler's Line

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 8 oktober 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3