De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Integreren

 Dit is een reactie op vraag 12857 
Bedankt voor uw antwoord, ik heb de primitieven gevonden van a en c alleen bij b kom ik er niet uit denk ik.
ik weet:
f(x)= sin(bx) F(x)= -1/b .cos(bx)
g(x)= cos(bx) G(x)= 1/b .sin(bx)(daarmee snap ik a)
klopt het dat u bij b van deze regel gebruik maakt:
cosx dx = sinx (primitieve)
en klopt het dat men die 1/2 voor de cos gewoon moet negeren en cos(x-1/4p) moet primitiveren via die regel en dan gewoon die 1/2 er weer voor zetten ?, wat ik dus wil zeggen is dat men bij dit soort functies "achteraf goed praten niet nodig is, ten minste volgens die regel maakt het niet uit wat er voor de cosx zit klopt dit ?
Alvast bedankt voor het beantwoorden.

Shahra
Leerling bovenbouw havo-vwo - zaterdag 28 juni 2003

Antwoord

Met f(x)=1/2cos(x-1/4p) zou ik denken dat F(x)=sin(x-1/4p) is... of iets dergelijks.
F'(x)=cos(x-1/4p)... mwa... dat klopt bijna. Die factor 1/2 heb ik niet...

Inderdaad de afgeleide van c·f(x) met c een constante is c·f'(x) (zie onderaan voor regels diff.en int.)

Dus....
F(x)=1/2·sin(x-1/4p)

Ik gebruik dus geen 'nieuwe' regels, maar in feite de 'normale' rekenregels voor het differentiëren.... maar dan 'achterstevoren'.

Hopelijk is het duidelijk.

Zie Differentiëren en integreren

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 28 juni 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3