De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Berekening van het aantal mogelijkheden

 Dit is een reactie op vraag 1250 
Ik ervaar toch nog problemen met de berekening van het aantal 7 letter 'woorden' van het 8 letter woord TENTAMEN.
Als ik nu het woord TAART neem en hiermee het aantal 3 letter 'woorden' wil bepalen (hetzelfde principe) kom ik uit op het volgende...
Theoretische:
- Het woord TAART als 5 verschillende letters zien, dit geeft; 5!/2! = 60 mogelijkheden
- Het antwoord nu delen door het aantal dubbelen geeft 60/(2!*2!) = 15 mogelijkheden

Maar als ik dit voorbeeld met de hand nareken kom ik op de volgende 18 mogelijkheden...

TAA
TAR
TAT
TRT
TRA
TTA
TTR

AAT
AAR
ATA
ATR
ATT
ARA
ART

RAA
RTT
RTA
RAT

Wat doe ik nu fout in mijn berekening ??

Lucas
Student hbo - maandag 28 januari 2002

Antwoord

Beste Lucas,

Bedankt voor je reactie.

Dit was waarvoor ik probeerde te waarschuwen. Als je meer dan 1 letter gaat weglaten, dan maakt het uit of je dubbele letters weglaat of niet. Laten we nog een eenvoudiger voorbeeld nemen. Het woord AAR.

Als we nu het aantal woorden dat we met AAR kunnen maken van 2 letters willen weten, dan weten we best dat dat aantal natuurlijk drie is, namelijk AA, RA en AR. Klopt dit met de berekening?

Aantal woorden van 2 letters: 3!/1! = 6
Dubbelen weglaten: 6/2! = 3

Klopt dus.

Maar als we twee letters weglaten, dan ligt dat anders. Natuurlijk weten we best dat er nu alleen A en R over blijven. Maar gaan we rekenen dan krijgen we:

Aantal woorden van 2 letters: 3!/2! = 3
Dubbelen uitdelen: 3/2! = 1,5

Wat gaat er fout? Wel, het dubbelen uitdelen heeft geen zin als beide letters van dezelfde soort worden weggelaten. In een dergelijk geval moet je gevallen gaan onderscheiden (dubbelen beide weggelaten - of niet) en dat maakt het ingewikkelder.

Overigens was dat in jouw oorspronkelijke vraag niet nodig, want je liet maar 1 letter weg.

Zie vraag 1250

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 30 januari 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3