De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oppervlakte

Gegeven is een cirkel met straal R. Een rechte op afstand R/6 van het middelpunt verdeelt de cirkel in 2 cirkelsegmenten. In het kleinste segment wordt een veranderlijke rechthoek ingeschreven. Zowel breedte als hoogte worden gevraagd. De breedte vind ik zelf.
De x-as snijdt de rechthoek namelijk in 2 punten; in R/6 en in UR, met U een parameter. De breedte wordt dan UR - R/6 = [U - (1/6)].R
De hoogte zou 2RÖ(1-U2) zijn, maar hoe kom je daar aan ?

berten
3de graad ASO - woensdag 25 juni 2003

Antwoord

Good old Pythagoras!

Bekijk de driehoek gevormd door het middelpunt van de cirkel, het punt UR, en van daaruit loodrecht naar boven, tot aan het snijpunt met de cirkel. Dit is een rechthoekige driehoek, de horizontale zijde meet UR, de schuine meet R (straal van de cirkel!), dus R2-(UR)2=x2, met x de opstaande rechthoekszijde. Twee keer die zijde is de gevraagde hoogte van de rechthoek, vandaar dat die hoogte = 2RÖ(1-U2).

Christophe.

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 25 juni 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3