Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Oppervlakte

Gegeven is een cirkel met straal R. Een rechte op afstand R/6 van het middelpunt verdeelt de cirkel in 2 cirkelsegmenten. In het kleinste segment wordt een veranderlijke rechthoek ingeschreven. Zowel breedte als hoogte worden gevraagd. De breedte vind ik zelf.
De x-as snijdt de rechthoek namelijk in 2 punten; in R/6 en in UR, met U een parameter. De breedte wordt dan UR - R/6 = [U - (1/6)].R
De hoogte zou 2RÖ(1-U2) zijn, maar hoe kom je daar aan ?

berten
3de graad ASO - woensdag 25 juni 2003

Antwoord

Good old Pythagoras!

Bekijk de driehoek gevormd door het middelpunt van de cirkel, het punt UR, en van daaruit loodrecht naar boven, tot aan het snijpunt met de cirkel. Dit is een rechthoekige driehoek, de horizontale zijde meet UR, de schuine meet R (straal van de cirkel!), dus R2-(UR)2=x2, met x de opstaande rechthoekszijde. Twee keer die zijde is de gevraagde hoogte van de rechthoek, vandaar dat die hoogte = 2RÖ(1-U2).

Christophe.

Christophe
woensdag 25 juni 2003

©2001-2024 WisFaq