De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Raaklijn en normaal

Wat is de concrete formule voor de raaklijn en de normaal van een ellips of hyperbool in een bepaald punt?

Matthi
3de graad ASO - woensdag 11 juni 2003

Antwoord

Een manier om de raaklijn te vinden is de volgende:
schrijf de vergelijking van de ellips met middelpunt (p, q) in de vorm:
(x-p)2/a2 + (y-q)2/b2 = 1
Dan is de vergelijking van de raaklijn in het punt (x0, y0) dat op de ellips ligt:
(x0-p)·(x-p)/a2 + (y0-q)·(x-q)/b2 = 1.
De normaal staat hier loodrecht op, wat leidt tot de formule:
b2·(x0-p)·(y-y0) = -a2·(y0-q)·(x-x0)
Voor de hyperbool geldt iets soortgelijks, met - in plaats van + tussen de termen in het linkerlid.
succes,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 11 juni 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3