De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vierdegraads vergelijkingen

hallo, ik heb op een site het volgende gelezen:
Now, we can write:

y4+py2=-qy-r
y4+2py2+p2=py2-qy-r+p2
(y2+p)2=py2-qy-r+p2.

Now, for any z,

(y2+p+z)2=((y2+p)+z)2
=(y2+p)2+2(y2+p)z+z2
=py2-qy-r+p2+2z(y2+p)+z2
(p+2z)y2-qy+(p2-r+2pz+z2) (*)

The right hand side of (*) is a quadratic in y; and we can choose z so that it is a perfect square, ie so that the discriminant is zero, ie:

(-q)2-4(p+2z)(p2-r+2pz+z2)=0.

We can rewrite this as (q2-4p3+4pr)+(-16p2+8r)z-20pz2-8z3=0.

het eerste snap ik nog, maar dan vanaf now any z. Hoe doen ze dat allemaal in z schrijven en wat bedoelen ze met de right hand?
Zou u zo spoedig mogelijk willen terugschrijven ivm deadline!!!
Alvast bedankt

.
Leerling bovenbouw havo-vwo - zondag 18 mei 2003

Antwoord

Eerst nog even het stukje dat je snapte

Let goed op de rode kleur)
q11214img1.gif


Nu het tweede gedeelte
q11214img2.gif

dit is van de vorm
ay2+by+c

Right hand side is engels voor "rechterlid",
hier gewoon de laatste regel
De discriminant van deze uitdrukking is:
(-q)2-4(p+2z)(p2-r+2pz+z2

Nu willen ze dat die discriminant 0 is zodat uitdrukking *
een kwadraat is.
Kun je zo verder?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 18 mei 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3