Voor de vorming van een pincode met 25 tekens worden gelijke vierkantjes gebruikt waarin een X of O voorkomt. Hoeveel van deze codes zijn er mogelijk als er precies 11 keer een X in voorkomt?
111·214/11!
Fayçal
3de graad ASO - donderdag 4 juni 2020
Antwoord
Als ik het goed lees moet je elf vierkantjes uit de vijfentwintig kiezen; dat gaat op $$\binom{25}{11} =\frac{25!}{11!\cdot14!} $$manieren. Jouw formule begrijp ik niet.