\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Re: Re: De laplace transformatie van de deltafunctie van Dirac

 Dit is een reactie op vraag 86589 
Als ik nu alles substitueer door (t-a) strand ik vast op L{Hv(t-a-e)}. (zie foto deel 1).

Ik ben verder gegaan met een andere manier (zie deel 2 op de foto). Namelijk de afgeleide van Heaviside als definitie. Hiermee ontwijk ik de integraal van de Laplace transformatie en krijg ik wel de uitkomst. Alleen kom ik steeds op hetzelfde domein. Namelijk dat deze functie alleen geldig is voor ta.

Erwin
Student hbo - dinsdag 24 juli 2018

Antwoord

De $t+a$ moet $t-a$ zijn.

Je hebt $\mathcal{L}(Hv(t-\epsilon))=\frac1se^{-\epsilon s}$ vul nu voor $\epsilon$ de som $a+\epsilon$ in wnt $t-a-\epsilon=t-(a+\epsilon)$ en je krijgt $\mathcal{L}(Hv(t-a-\epsilon))=\frac1se^{-(a+\epsilon)s}$ en idem voor $\mathcal{L}(Hv(t-a))=\frac1se^{-as}$.
Nu krijg je
$$
\mathcal{L}(\delta_\epsilon(t-a)) = \frac{e^{-as}}{s}\frac{1-e^{-\epsilon s}}\epsilon
$$Nu kun je het oude bewijs volgen.

Bij het werk met de Laplace-transformatie neemt men vaak stilzwijgend aan dat alle functies op heel $\mathbb{R}$ zijn gedefinieerd, door voor negatieve $t$ de functiewaarden op $0$ te stellen; je functie is dus ook voor $t\in[0,a)]$ gedefinieerd, met functiewaarde $0$. De interaal $\int_0^a$ levert dus bijdrae $0$.

Ik had je foto niet gezien, nu wel. Beide integralen waar je mee begint zijn fout, je moet deze hebben:
$$
\int_0^\infty e^{-st} \delta(t-a)\,dt
$$

kphart
dinsdag 24 juli 2018

 Re: Re: Re: Re: De laplace transformatie van de deltafunctie van Dirac 

©2001-2024 WisFaq