Determinant uitschrijven?
Zie vraag 7980Het oplossen van de determinant begrijp ik niet, kun je dit uitschrijven?
Ad Jan
Ouder - vrijdag 28 februari 2003
Antwoord
Hoi, We zullen de determinant van vraag 7980 "ontwikkelen naar de eerste rij". x+2 ; y ; z-3 0 ; 2 ; 4 3 ; -1 ; 1 de techniek gaat als volgt: Je begint met het eerste element van de rij/kolom die je gaat "ontwikkelen". In dit geval x+2 Je noteert: (x+2)·(-1)1+1·wat er over blijft als je rij 1 en kolom 1 veegt(=wegschrapt). je neemt dus (x+2) , vermenigvuldig met (-1) tot de macht "plaats rij + kolom" , maal de determinant van de grote determinant zonder rij 1 en kolom 1 Deze kleine determinant is 2 ; 4 -1 ; 1 De kleine werk je als volgt uit: Je vermenigvuldigt de elementen links boven en rechts onder en daar van trek je de vermigvuldiging van de 2 andere af In dit geval dus: (2·1)-(4·(-1))= 6 je krijgt dus (x+2)·(-1)2·(6) Maar voor de hele determinant moet je het ook nog voor y en z-3 berekenen en alles optellen: We krijgen dus: (x+2)·(-1)2·(6) + y·(-1)3·[(0·1)-(3·4)] + (z-3)(-1)4·[(0·-1)-(2·3)]=0 Helemaal uittellen geeft: 6x+12+12y-6z+18=0 x + 2y - z + 5 = 0 Voor alle duidelijkheid zal ik hieronder nog een ander voorbeeld geven Bereken de determinant van: 8;6;1 3;-2;4 0;3;-2 via ontwikkeling van de 2e rij (lukt evengoed als eerste rij of kolom) 3·(-1)3·(-15) + (-2)·(-1)4(-16) + 4·(-1)5·24 = 45 + 32 - 96 = -19 Hopelijk is nu alles wat duidelijker.
Koen
vrijdag 28 februari 2003
©2001-2024 WisFaq
|