Topvergelijking parabool
Hoi ik heb een vraagje over de topvergelijking van een parabool:
De topvergelijking van een parabool is v=+-√2pu
Nu geeft men de volgende criteria op:
p$>$0: v=+-√(2pu) u$\ge$0 (top links) p$<$0: v=+-√(2pu) u$\le$0 (top rechts)
Ik begrijp in bovenstaande criteria de waarde van p en u niet goed. De afstand tussen het brandpunt en de richtlijn is p, dus hoe kan deze dan ooit negatief zijn?
Leentj
Student Hoger Onderwijs België - zondag 24 mei 2015
Antwoord
Ik heb hier en daar wat haakjes gezet, maar 't heeft te maken met die wortel. Als p positief is dan moet u wel groter of gelijk aan nul zijn anders wordt het getal onder het wortelreken negatief. De parabool is dan alleen gedefinieerd voor u$\ge$0.
Als p negatief is dan moet u ook negatief zijn anders wordt het getal onder het wortelteken negatief. Ik heb hier twee voorbeelden met p=3 en p=-3.
maandag 25 mei 2015
©2001-2024 WisFaq
|