WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Topvergelijking parabool

Hoi ik heb een vraagje over de topvergelijking van een parabool:

De topvergelijking van een parabool is v=+-√2pu

Nu geeft men de volgende criteria op:

p$>$0: v=+-√(2pu) u$\ge$0 (top links)
p$<$0: v=+-√(2pu) u$\le$0 (top rechts)

Ik begrijp in bovenstaande criteria de waarde van p en u niet goed. De afstand tussen het brandpunt en de richtlijn is p, dus hoe kan deze dan ooit negatief zijn?

Leentje
24-5-2015

Antwoord

Ik heb hier en daar wat haakjes gezet, maar 't heeft te maken met die wortel. Als p positief is dan moet u wel groter of gelijk aan nul zijn anders wordt het getal onder het wortelreken negatief. De parabool is dan alleen gedefinieerd voor u$\ge$0.

Als p negatief is dan moet u ook negatief zijn anders wordt het getal onder het wortelteken negatief. Ik heb hier twee voorbeelden met p=3 en p=-3.

q75681img1.gif

WvR
25-5-2015


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#75681 - Functies en grafieken - Student Hoger Onderwijs België