\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Integreren

Beste
Ik heb de oplossing van volgend probleem, maar begrijp de grenzen niet helemaal. Bepaal het volume van het gebied in het eerste octant, begrensd door de vlakken y=0 en y=x van de ellipsoïde x2/a2+y2/b2+z2/c2=1. De oplossing is omzetten naar bolcoördinaten, Jacobiaan berekenen enz... met als grenzen voor r: 0 tot 1; voor hoek 1: 0 tot $\frac{\pi}{2}$ en voor hoek 3: 0 tot Bgtan(a/b). Ik begrijp die grenzen van r niet: waarom tot 1? En die van hoek 2 niet: waarom tot Bgtan(a/b)? Ik dacht tot Bgtan(b/a)?
Alvast bedankt!

OPa
Docent - vrijdag 17 april 2015

Antwoord

Niet precies bolcoordinaten, maar een beetje aangepast: $x=ar\cos\theta\sin\phi$, $y=br\sin\theta\sin\phi$, $z=cr\cos\phi$. Dan geldt $(x/a)^2+(y/b)^2+(z/c)^2=r^2$, daarom: $0\le r\le1$. En $y=x$ wordt $b\sin\phi=a\cos\phi$, ofwel $\tan\phi=\frac ab$.

kphart
zaterdag 18 april 2015

©2001-2024 WisFaq