\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Heb een zetje nodig bij het integreren van de volgende oefening

Hallo,

Ik heb de volgende oefening waar ik steeds vast kom te zitten:
$\int{}$5x/5x+3x
Deze vereenvoudig ik dan tot het volgende:
$\int{}$1/1+(3/5)x
Als ik dan substitueer, neem ik t= 1+(3/5)x
Maar als ik t afleid, dan blijf ik steeds zitten met die x, omdat het een exponentiële functie is. Kan u me op m'n fout wijzen?

Alvast bedankt,

Joey

Joey
3de graad ASO - vrijdag 3 februari 2012

Antwoord

Je kunt misschien beter t=(3/5)x nemen.
Dan dt=ln(3/5)·(3/5)x·dx, dus
dx=dt/(ln(3/5)·(3/5)x)=dt/(t·ln(3/5)).
De integraal gaat dan over in
1/ln(3/5)·$\int{}$dt/(t·(1+t)).
Deze kun je vinden m.b.v. breuksplitsing.

Een andere mogelijkheid is dat je 5x/(5x+3x) schrijft als:
(5/3)x/((5/3)x+1).
De teller is dan de afgeleide van de noemer (op een factor na).


vrijdag 3 februari 2012

©2001-2024 WisFaq