Partieel integreren van het product x f(x)
Beste wisfaq, De functie u=u(x) voldoet aan uxx+((n-1)/x)ux+(k2)u=0. Zij w=(1/x)ux, dan geldt wxx+((n+1)/x)wx+(k2)w=0. Dit wil ik graag aantonen. Mijn probleem is dat ik niet hoe ik u in termen van (afgeleiden van) w kan schrijven. Ik heb ux=xw(x) en uxx=w+xwx. Nu wil ik u bepalen m.b.v. ux=xw(x) maar als ik partieel integreer dan loop ik vast. Ik krijg namelijk INT[xw(x)]dx=1/2(x2)w(x)-1/2INT[(x2)wx]dx. Als ik dit verder uitwerk dat vallen er termen weg en houd ik uiteingelijk INT[xw(x)]dx=0 over, ik begrijp niet wat ik verkeerd doe. Vriendelijke groeten, Viky
Viky
Student universiteit - dinsdag 9 november 2010
Antwoord
Ik zou w, wx en wxx in ux, uxx en uxxx uitdrukken en dan in de DV voor w invullen. Differentieer ook de gegeven DV voor u naar x en vergelijk de resultaten.
kphart
donderdag 11 november 2010
©2001-2024 WisFaq
|