\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Re: Re: Differentiaalvergelijking oplossen

 Dit is een reactie op vraag 62975 

Beste wisfaq,
De afgeleide van e(-2x-x^2) (-2-2x)*e^(-2x-x^2)

maar de laastste stap wat ik nog moet doen is toch integreren links en rechts?? en ik zou eigenlijk
exp(-2x)*exp(x^2) moeten integreren toch??

bij alle voorbeelden die ik ben tegengekomen moet de int. factor (R) worden vervangen in:
{Ry}'=R*(....)
de laatste stap om y aan een kant te krijgen is door
{}' te integreren®{}.
om de verg in balans te houden moet ik links en rechts hetzelfde doen.

ik heb een vb in het boek calculus 5e editie (blz 634) gevonden en gebruik deze als (enige)referentie,
example 3
solve y'+2xy=1
the integrating factor:exp(x^2)

exp(x^2)*(y'+2xy)=exp(x^2)
(exp(x^2)y)'=exp(x^2)
(exp(x^2)y)=òexp(x^2)+C

òexp(x^2)dx can't be expressed in terms of elementary functiosns. Nonetheless, it's a perfectly good function and we can leave the answer as:
y=exp(x^-2)*òexp(x^2)+C*exp(x^-2)

kunt u mij uitleggen wat ik dan fout doe? ik bedoel, ik begrijp niet waar ik in de laatste stap de afgeleide kan gebruiken?? de term die roet in het eten gooit is dus
òexp(x^2)dx

nogmaals bedankt voor het geduld!

mvg,

Carlos

carlos
Student universiteit - maandag 23 augustus 2010

Antwoord

Carlos,
De ò(1+x)exp(-2x-x2)dx=-1/2exp(-2x-x2)+C

kn
maandag 23 augustus 2010

 Re: Re: Re: Re: Differentiaalvergelijking oplossen 

©2001-2024 WisFaq