\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Poolvergelijkingen bewijzen

Ik krijg wel een parabool. Ik heb ingevuld:
((1/(2-2sin(q))-(1/(2+2sin(q)))
Zou je hier ajb nog naar willen kijken?
Groeten

Anneli
Leerling bovenbouw havo-vwo - zondag 6 juni 2010

Antwoord

Tja... dat is dan wel heel iets anders dan wat je eerst schreef! Eerst te weinig haakjes, nu een aantal haakjes te veel... dat laatste is minder erg:-)

Maar 't gaat dus om:

$
\large r = \frac{1}
{{2 - 2\sin \theta }} - \frac{1}
{{2 + 2\sin \theta }}
$

Dit kan je schrijven als:

$
\eqalign{
& r = \frac{1}
{{2 - 2\sin \theta }} - \frac{1}
{{2 + 2\sin \theta }} \cr
& r = \frac{{2 + 2\sin \theta }}
{{\left( {2 - 2\sin \theta } \right)\left( {2 + 2\sin \theta } \right)}} - \frac{{2 - 2\sin \theta }}
{{\left( {2 + 2\sin \theta } \right)\left( {2 - 2\sin \theta } \right)}} \cr
& r = \frac{{4\sin \theta }}
{{\left( {2 - 2\sin \theta } \right)\left( {2 + 2\sin \theta } \right)}} \cr
& r = \frac{{4\sin \theta }}
{{4\cos ^2 \theta }} \cr
& r = \frac{{\sin \theta }}
{{\cos ^2 \theta }} \cr}
$

Helpt dat?


zondag 6 juni 2010

©2001-2024 WisFaq