To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
Loading jsMath...
\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Impliceren ´veel´ oplossingen een monochromatische?

Stel f(x) is een functie die naar oneindig gaat.
Stel dat we een vergelijking hebben die meer dan m*f(m) oplossingen in de natuurlijke getallen heeft m. Stel we kleuren met r kleuren. Bestaat er noodzakelijk een monochromatische oplossing?

Voorbeeld:
We bekijken de vergelijking a + b = c. Voor elke keuze van c is het aantal oplossingen in , gelijk aan c-1 (mits we (2, 3, 5) verschillend achten van (3, 2, 5)). Dus het aantal oplossingen m is gelijk aan: å(i-1), waar i van 1 naar m gaat, = m(m-1)/2. En omdat (m-1)/2 naar oneindig gaat als m naar oneindig gaat, is aan de voorwaarde van de vraag voldaan; moet dus gelden dat we een oplossing voor onze vergelijking krijgen, waarbij a, b en c allen dezelfde kleur hebben, als we met een r aantal kleuren kleuren?

Met vriendelijke groet

Wouter
Student universiteit - donderdag 1 april 2010

Antwoord

Ik vermoed dat zo'n algemene stelling niet waar is; in het voorbeeld dat je noemt (de stelling van Schur) is de functie f lineair, namelijk f(m)=(m-1)/2, maar bij r kleuren is een zekere bovengrens voor een monochrome oplossing gelijk aan het product ven e en r! en dat groeit veel sneller dan de f.

Zie Het originele artikel van Schur

kphart
zaterdag 3 april 2010

 Re: Impliceren ´veel´ oplossingen een monochromatische? 

©2001-2025 WisFaq