\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Limiet bepaling van een functie

Van de navolgende functies heb ik volgens het uitwerkingen boek een afwijkend antwoord, maar ik heb geen idee waar ik de mist in ga.

lim x-4 = (x3-64)/(x-4) Antwoord = 48
Mijn antwoord:
(x3-43)/(x-4)= (x-4)3/(x-4)= (x-4)(x-4)(x-4)/(x-4)=
(x-4)(x-4)=x2-8x+16 = 16 Waar ga ik de fout in ?

lim x-2 = (x4-16)/(x-2) Antwoord = 32
Mijn antwoord is in dit geval ook 32, maar is de methode juist ?
(x4-24)/(x-2)= (x2+22)(x2-22)/(x-2)
(x2-4)=(x+2)(x-2)
(x2+4)(x+2)(x-2)/(x-2)= (x2+4)(x+2)= 32

Johan
Student hbo - dinsdag 27 november 2007

Antwoord

Beste Johan,
Je begint met een fout:
x3-44¹(x-4)3 !!
(23-13¹(2-1)3)
Maar, omdat je 0 krijgt als je x=4 invult in de teller (x3-43) , is die teller deelbaar door (x-4).
Voer een staartdeling uit en je krijgt:
(x3-64)/(x-4)=x2+4x+16.

De tweede opgave doe je goed.

ldr
dinsdag 27 november 2007

©2001-2024 WisFaq